VISCOUS FLUID FLOW THROUGH A PIPE WITH ORIFICES
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An approximate solution is obtained to the problem of fluid flow through a pipe with orifices,
in close agreement with the solution obtained numerically.

An analytical solution has been obtained in [1] to the hydraulic problem concerning the steady flow
of a viscous incompressible fluid through a pipe with orifices and a stop at one end, the orifices assumed
there to be distributed evenly with a constant total area per wnit pipe length. The exact solution to this
problem is mwieldy and not suitable for practical design calculations, however, as evidenced by the fact
that the author offers a solution obtained numerically as an alternative, In this article here we propose

a method of finding an approximate solution to the problem, one which agrees closely with the solution
obtained numerically.

With a square-law drag, the flow equations for a viscous fluid are [2]:
2 p"f__iltf . /r'zp:
(%v—i——p—)—— - v=—T1 - (1)

At the pipe entrance one may stipulate either the pressure or the velocity. For the purpose of com-
parison with the results in [1], we will stipulate the entrance pressure. In this case the boundary condi-
tions become

PO =p, v(l)=0 (2)

Changing in (1)-(2) to dimensionless variable, we obtain
Qw4 g =—pu2, W =—cVq (3)
e0)=1 u(l)=0. 4

We seek an approximate solution to (3)-(4) in the form

u="Na,(1—2), (5)

4=

i=1

o=~ (E i, (1 ~z)f—‘)2. | (6)

i

=l

Such a choice of u and ¢ satisfies the second of Eqgs. (3) and the second of conditions (4). Further
using the first of conditions (4), we obtain
R 2 ia, = 1. (7
o i=1

Letting z = 1 in the first of Egs. (3), we obtain

¢ (1) =0. (3)
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o / \‘Pf u, The additional n—-2 conditions needed for determining the coefficients a;
15 Y P e will be fond from the requirement that u and ¢ satisfy not the first of Egs. (3).
/ =TT 71 but the integral relations derived from (3) by integrating it with respect to z

A from 0 to 1, after both sides have been multiplied by zX:
\

0

i\ 1 ;

/ \ i'z’f(quz-}(p)’dz:——w\‘uzzv’edz (g=0,1, ..., n—23). {9
g5 // Y B b

N o It is to be noted that this method is analogous to the Karman - Polhausen
0 y 7 3 . method in their boundary-layer theory [3].

With the left-hand side of (9) integrated by parts, the second of Egs.

Fig. 1. Relations (o) {3) and the boundary conditions (4) yield the following relations:

and ¢y(c).
1
¥ | e = — @ (1) + 1 + 20 (0),
o
1

gzé[(22k~1pz)u~j—%(;—, dz:m(l)f—;lgi(%)-) (k= 1), (10)

.
0

1
2kz . — ) ,
gju *s —f—u(Q%k———ﬂ:Z)Z———m 122z = (1) (2 <k <n—23).
! ¢ |

Equations (7), (8), and (10) are sufficient for determining n coefficients a;.

Let us complete the calculations for the specific case n =3 and o = const. For condifions (3) and (8)
follows here that

2, — 6 — 33— 20y, @, = 0. (1)
Using then the first of Eqs. (10), we find
(/6 801 \ H 6 8o )2
=05 — L — 8 — 11— — 8uo
i | i I L P
: 2 172y / —1
N 58113_](_‘1/_0__2%02 } !(.%—8::+.58i) , (12)
\o? 35 )\ 3 i\ 35
When ¢ < 1, we have the following expressions:
o® P 2
a3~——~—3—.(7¢——§), uo'—‘—u(O),\/GT—g%Gz,

2 \
n= ()~ 1+ 200w ).

Curves of uy and ¢; as functions of o have been plotted in Fig. 1 (solid lines) according to formulas

u=a,(1—2)°+ (0 —3a(l — 2),

1 {(13)

@ = — (0 + 3a2" —6az2)®,
o

with a; determined from (12) for ¢/¢ = 0.256.

A comparison between these curves and analogous ones in Fig. 2 of [i], after obvious corrections
have been made in the latter (¢; curve begins not at 0 but at 1), and a comparison between u and ¢ profiles
for various values of ¢ indicate that formulas (12) and (13) yield results close to those obtained numeri-~
cally.

NOTATION

o is the density of fluid in a pipe;
o is the Coriolis coefficient;
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P, A are the total and the referred coefficient of drag in a pipe;

o is the ratio of total orifice area in pipe wall to inside cross section of a pipe;

x is the longitudinal coordinate (0 = x = L);

v = v(x) is the mean axial velocity of fluid in a pipe;

p =p) is the gage pressure (above outside pressure) in a pipe;

po = p(0);

z=x/L,

u =vvyp/2p,,

¢ =p/py are the dimensionless longitudinal coordinate, mean axial velocity, and gage pressure in

a pipe.
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